Gauss–Hermite quadrature

Form of Gaussian quadrature
Weights versus xi for four choices of n

In numerical analysis, Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of integrals of the following kind:

+ e x 2 f ( x ) d x . {\displaystyle \int _{-\infty }^{+\infty }e^{-x^{2}}f(x)\,dx.}

In this case

+ e x 2 f ( x ) d x i = 1 n w i f ( x i ) {\displaystyle \int _{-\infty }^{+\infty }e^{-x^{2}}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i})}

where n is the number of sample points used. The xi are the roots of the physicists' version of the Hermite polynomial Hn(x) (i = 1,2,...,n), and the associated weights wi are given by [1]

w i = 2 n 1 n ! π n 2 [ H n 1 ( x i ) ] 2 . {\displaystyle w_{i}={\frac {2^{n-1}n!{\sqrt {\pi }}}{n^{2}[H_{n-1}(x_{i})]^{2}}}.}

Example with change of variable

Consider a function h(y), where the variable y is Normally distributed: y N ( μ , σ 2 ) {\displaystyle y\sim {\mathcal {N}}(\mu ,\sigma ^{2})} . The expectation of h corresponds to the following integral:

E [ h ( y ) ] = + 1 σ 2 π exp ( ( y μ ) 2 2 σ 2 ) h ( y ) d y {\displaystyle E[h(y)]=\int _{-\infty }^{+\infty }{\frac {1}{\sigma {\sqrt {2\pi }}}}\exp \left(-{\frac {(y-\mu )^{2}}{2\sigma ^{2}}}\right)h(y)dy}

As this does not exactly correspond to the Hermite polynomial, we need to change variables:

x = y μ 2 σ y = 2 σ x + μ {\displaystyle x={\frac {y-\mu }{{\sqrt {2}}\sigma }}\Leftrightarrow y={\sqrt {2}}\sigma x+\mu }

Coupled with the integration by substitution, we obtain:

E [ h ( y ) ] = + 1 π exp ( x 2 ) h ( 2 σ x + μ ) d x {\displaystyle E[h(y)]=\int _{-\infty }^{+\infty }{\frac {1}{\sqrt {\pi }}}\exp(-x^{2})h({\sqrt {2}}\sigma x+\mu )dx}

leading to:

E [ h ( y ) ] 1 π i = 1 n w i h ( 2 σ x i + μ ) {\displaystyle E[h(y)]\approx {\frac {1}{\sqrt {\pi }}}\sum _{i=1}^{n}w_{i}h({\sqrt {2}}\sigma x_{i}+\mu )}

References

  1. ^ Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN 978-0-486-61272-0. Equation 25.4.46.

External links

  • For tables of Gauss-Hermite abscissae and weights up to order n = 32 see http://www.efunda.com/math/num_integration/findgausshermite.cfm.
  • Generalized Gauss–Hermite quadrature, free software in C++, Fortran, and Matlab