Gromov product

In mathematics, the Gromov product is a concept in the theory of metric spaces named after the mathematician Mikhail Gromov. The Gromov product can also be used to define δ-hyperbolic metric spaces in the sense of Gromov.

Definition

Let (Xd) be a metric space and let x, y, z ∈ X. Then the Gromov product of y and z at x, denoted (yz)x, is defined by

( y , z ) x = 1 2 ( d ( x , y ) + d ( x , z ) d ( y , z ) ) . {\displaystyle (y,z)_{x}={\frac {1}{2}}{\big (}d(x,y)+d(x,z)-d(y,z){\big )}.}

Motivation

Given three points x, y, z in the metric space X, by the triangle inequality there exist non-negative numbers a, b, c such that d ( x , y ) = a + b ,   d ( x , z ) = a + c ,   d ( y , z ) = b + c {\displaystyle d(x,y)=a+b,\ d(x,z)=a+c,\ d(y,z)=b+c} . Then the Gromov products are ( y , z ) x = a ,   ( x , z ) y = b ,   ( x , y ) z = c {\displaystyle (y,z)_{x}=a,\ (x,z)_{y}=b,\ (x,y)_{z}=c} . In the case that the points x, y, z are the outer nodes of a tripod then these Gromov products are the lengths of the edges.

In the hyperbolic, spherical or euclidean plane, the Gromov product (AB)C equals the distance p between C and the point where the incircle of the geodesic triangle ABC touches the edge CB or CA. Indeed from the diagram c = (ap) + (bp), so that p = (a + bc)/2 = (A,B)C. Thus for any metric space, a geometric interpretation of (AB)C is obtained by isometrically embedding (A, B, C) into the euclidean plane.[1]

Properties

  • The Gromov product is symmetric: (yz)x = (zy)x.
  • The Gromov product degenerates at the endpoints: (yz)y = (yz)z = 0.
  • For any points p, q, x, y and z,
d ( x , y ) = ( x , z ) y + ( y , z ) x , {\displaystyle d(x,y)=(x,z)_{y}+(y,z)_{x},}
0 ( y , z ) x min { d ( y , x ) , d ( z , x ) } , {\displaystyle 0\leq (y,z)_{x}\leq \min {\big \{}d(y,x),d(z,x){\big \}},}
| ( y , z ) p ( y , z ) q | d ( p , q ) , {\displaystyle {\big |}(y,z)_{p}-(y,z)_{q}{\big |}\leq d(p,q),}
| ( x , y ) p ( x , z ) p | d ( y , z ) . {\displaystyle {\big |}(x,y)_{p}-(x,z)_{p}{\big |}\leq d(y,z).}

Points at infinity

Consider hyperbolic space Hn. Fix a base point p and let x {\displaystyle x_{\infty }} and y {\displaystyle y_{\infty }} be two distinct points at infinity. Then the limit

lim inf x x y y ( x , y ) p {\displaystyle \liminf _{x\to x_{\infty } \atop y\to y_{\infty }}(x,y)_{p}}

exists and is finite, and therefore can be considered as a generalized Gromov product. It is actually given by the formula

( x , y ) p = log csc ( θ / 2 ) , {\displaystyle (x_{\infty },y_{\infty })_{p}=\log \csc(\theta /2),}

where θ {\displaystyle \theta } is the angle between the geodesic rays p x {\displaystyle px_{\infty }} and p y {\displaystyle py_{\infty }} .[2]

δ-hyperbolic spaces and divergence of geodesics

The Gromov product can be used to define δ-hyperbolic spaces in the sense of Gromov.: (Xd) is said to be δ-hyperbolic if, for all p, x, y and z in X,

( x , z ) p min { ( x , y ) p , ( y , z ) p } δ . {\displaystyle (x,z)_{p}\geq \min {\big \{}(x,y)_{p},(y,z)_{p}{\big \}}-\delta .}

In this case. Gromov product measures how long geodesics remain close together. Namely, if x, y and z are three points of a δ-hyperbolic metric space then the initial segments of length (yz)x of geodesics from x to y and x to z are no further than 2δ apart (in the sense of the Hausdorff distance between closed sets).

Notes

  1. ^ Väisälä, Jussi (2005-09-15). "Gromov hyperbolic spaces". Expositiones Mathematicae. 23 (3): 187–231. doi:10.1016/j.exmath.2005.01.010. ISSN 0723-0869.
  2. ^ Roe, John (2003). Lectures on coarse geometry. Providence: American Mathematical Society. p. 114. ISBN 0-8218-3332-4.

References

  • Coornaert, M.; Delzant, T.; Papadopoulos, A. (1990), Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics (in French), vol. 1441, Springer-Verlag, ISBN 3-540-52977-2
  • Kapovich, Ilya; Benakli, Nadia (2002). "Boundaries of hyperbolic groups". Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001). Contemp. Math. 296. Providence, RI: Amer. Math. Soc. pp. 39–93. MR 1921706.
  • Väisälä, Jussi (2005). "Gromov hyperbolic spaces". Expositiones Mathematicae. 23 (3): 187–231. doi:10.1016/j.exmath.2005.01.010.