Källén–Lehmann spectral representation

Expression for two-point correlation functions
Quantum field theory
Feynman diagram
History
Background
  • Field theory
  • Electromagnetism
  • Weak force
  • Strong force
  • Quantum mechanics
  • Special relativity
  • General relativity
  • Gauge theory
  • Yang–Mills theory
Symmetries
Scientists


  • v
  • t
  • e

The Källén–Lehmann spectral representation, or simply Lehmann representation, gives a general expression for the (time ordered) two-point function of an interacting quantum field theory as a sum of free propagators. It was discovered by Gunnar Källén in 1952, and independently by Harry Lehmann in 1954.[1][2] This can be written as, using the mostly-minus metric signature,

Δ ( p ) = 0 d μ 2 ρ ( μ 2 ) 1 p 2 μ 2 + i ϵ , {\displaystyle \Delta (p)=\int _{0}^{\infty }d\mu ^{2}\rho (\mu ^{2}){\frac {1}{p^{2}-\mu ^{2}+i\epsilon }},}

where ρ ( μ 2 ) {\displaystyle \rho (\mu ^{2})} is the spectral density function that should be positive definite. In a gauge theory, this latter condition cannot be granted but nevertheless a spectral representation can be provided.[3] This belongs to non-perturbative techniques of quantum field theory.

Mathematical derivation

The following derivation employs the mostly-minus metric signature.

In order to derive a spectral representation for the propagator of a field Φ ( x ) {\displaystyle \Phi (x)} , one considers a complete set of states { | n } {\displaystyle \{|n\rangle \}} so that, for the two-point function one can write

0 | Φ ( x ) Φ ( y ) | 0 = n 0 | Φ ( x ) | n n | Φ ( y ) | 0 . {\displaystyle \langle 0|\Phi (x)\Phi ^{\dagger }(y)|0\rangle =\sum _{n}\langle 0|\Phi (x)|n\rangle \langle n|\Phi ^{\dagger }(y)|0\rangle .}

We can now use Poincaré invariance of the vacuum to write down

0 | Φ ( x ) Φ ( y ) | 0 = n e i p n ( x y ) | 0 | Φ ( 0 ) | n | 2 . {\displaystyle \langle 0|\Phi (x)\Phi ^{\dagger }(y)|0\rangle =\sum _{n}e^{-ip_{n}\cdot (x-y)}|\langle 0|\Phi (0)|n\rangle |^{2}.}

Next we introduce the spectral density function

ρ ( p 2 ) θ ( p 0 ) ( 2 π ) 3 = n δ 4 ( p p n ) | 0 | Φ ( 0 ) | n | 2 {\displaystyle \rho (p^{2})\theta (p_{0})(2\pi )^{-3}=\sum _{n}\delta ^{4}(p-p_{n})|\langle 0|\Phi (0)|n\rangle |^{2}} .

Where we have used the fact that our two-point function, being a function of p μ {\displaystyle p_{\mu }} , can only depend on p 2 {\displaystyle p^{2}} . Besides, all the intermediate states have p 2 0 {\displaystyle p^{2}\geq 0} and p 0 > 0 {\displaystyle p_{0}>0} . It is immediate to realize that the spectral density function is real and positive. So, one can write

0 | Φ ( x ) Φ ( y ) | 0 = d 4 p ( 2 π ) 3 0 d μ 2 e i p ( x y ) ρ ( μ 2 ) θ ( p 0 ) δ ( p 2 μ 2 ) {\displaystyle \langle 0|\Phi (x)\Phi ^{\dagger }(y)|0\rangle =\int {\frac {d^{4}p}{(2\pi )^{3}}}\int _{0}^{\infty }d\mu ^{2}e^{-ip\cdot (x-y)}\rho (\mu ^{2})\theta (p_{0})\delta (p^{2}-\mu ^{2})}

and we freely interchange the integration, this should be done carefully from a mathematical standpoint but here we ignore this, and write this expression as

0 | Φ ( x ) Φ ( y ) | 0 = 0 d μ 2 ρ ( μ 2 ) Δ ( x y ; μ 2 ) {\displaystyle \langle 0|\Phi (x)\Phi ^{\dagger }(y)|0\rangle =\int _{0}^{\infty }d\mu ^{2}\rho (\mu ^{2})\Delta '(x-y;\mu ^{2})}

where

Δ ( x y ; μ 2 ) = d 4 p ( 2 π ) 3 e i p ( x y ) θ ( p 0 ) δ ( p 2 μ 2 ) {\displaystyle \Delta '(x-y;\mu ^{2})=\int {\frac {d^{4}p}{(2\pi )^{3}}}e^{-ip\cdot (x-y)}\theta (p_{0})\delta (p^{2}-\mu ^{2})} .

From the CPT theorem we also know that an identical expression holds for 0 | Φ ( x ) Φ ( y ) | 0 {\displaystyle \langle 0|\Phi ^{\dagger }(x)\Phi (y)|0\rangle } and so we arrive at the expression for the time-ordered product of fields

0 | T Φ ( x ) Φ ( y ) | 0 = 0 d μ 2 ρ ( μ 2 ) Δ ( x y ; μ 2 ) {\displaystyle \langle 0|T\Phi (x)\Phi ^{\dagger }(y)|0\rangle =\int _{0}^{\infty }d\mu ^{2}\rho (\mu ^{2})\Delta (x-y;\mu ^{2})}

where now

Δ ( p ; μ 2 ) = 1 p 2 μ 2 + i ϵ {\displaystyle \Delta (p;\mu ^{2})={\frac {1}{p^{2}-\mu ^{2}+i\epsilon }}}

a free particle propagator. Now, as we have the exact propagator given by the time-ordered two-point function, we have obtained the spectral decomposition.

References

  1. ^ Källén, Gunnar (1952). "On the Definition of the Renormalization Constants in Quantum Electrodynamics". Helvetica Physica Acta. 25: 417. doi:10.5169/seals-112316(pdf download available){{cite journal}}: CS1 maint: postscript (link)
  2. ^ Lehmann, Harry (1954). "Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder". Nuovo Cimento (in German). 11 (4): 342–357. Bibcode:1954NCim...11..342L. doi:10.1007/bf02783624. ISSN 0029-6341. S2CID 120848922.
  3. ^ Strocchi, Franco (1993). Selected Topics on the General Properties of Quantum Field Theory. Singapore: World Scientific. ISBN 978-981-02-1143-1.

Bibliography