Stephens' constant

Stephens' constant expresses the density of certain subsets of the prime numbers.[1][2] Let a {\displaystyle a} and b {\displaystyle b} be two multiplicatively independent integers, that is, a m b n 1 {\displaystyle a^{m}b^{n}\neq 1} except when both m {\displaystyle m} and n {\displaystyle n} equal zero. Consider the set T ( a , b ) {\displaystyle T(a,b)} of prime numbers p {\displaystyle p} such that p {\displaystyle p} evenly divides a k b {\displaystyle a^{k}-b} for some power k {\displaystyle k} . Assuming the validity of the generalized Riemann hypothesis, the density of the set T ( a , b ) {\displaystyle T(a,b)} relative to the set of all primes is a rational multiple of

C S = p ( 1 p p 3 1 ) = 0.57595996889294543964316337549249669 {\displaystyle C_{S}=\prod _{p}\left(1-{\frac {p}{p^{3}-1}}\right)=0.57595996889294543964316337549249669\ldots } (sequence A065478 in the OEIS)

Stephens' constant is closely related to the Artin constant C A {\displaystyle C_{A}} that arises in the study of primitive roots.[3][4]

C S = p ( C A + ( 1 p 2 p 2 ( p 1 ) ) ) ( p ( p + 1 + 1 p ) ) {\displaystyle C_{S}=\prod _{p}\left(C_{A}+\left({{1-p^{2}} \over {p^{2}(p-1)}}\right)\right)\left({{p} \over {(p+1+{{1} \over {p}})}}\right)}

See also

  • Euler product
  • Twin prime constant

References

  1. ^ Stephens, P. J. (1976). "Prime Divisor of Second-Order Linear Recurrences, I." Journal of Number Theory. 8 (3): 313–332. doi:10.1016/0022-314X(76)90010-X.
  2. ^ Weisstein, Eric W. "Stephens' Constant". MathWorld.
  3. ^ Moree, Pieter; Stevenhagen, Peter (2000). "A two-variable Artin conjecture". Journal of Number Theory. 85 (2): 291–304. arXiv:math/9912250. doi:10.1006/jnth.2000.2547. S2CID 119739429.
  4. ^ Moree, Pieter (2000). "Approximation of singular series and automata". Manuscripta Mathematica. 101 (3): 385–399. doi:10.1007/s002290050222. S2CID 121036172.
  • v
  • t
  • e