Zerrenda:Funtzio logaritmikoen integralak

Ondorengoa funtzio logaritmikoen integralen zerrenda bat da (jatorrizkoak edo antideribatuak). Integralen zerrenda osatuago nahi baduzu, ikusi integralen zerrenda.


Oharra: Artikulu honetan x>0 da.

ln a x d x = x ln a x x + K {\displaystyle \int \ln ax\;dx=x\ln ax-x+K}
ln ( a x + b ) d x = ( a x + b ) ln ( a x + b ) ( a x + b ) a + K {\displaystyle \int \ln(ax+b)\;dx={\frac {(ax+b)\ln(ax+b)-(ax+b)}{a}}+K}
( ln x ) 2 d x = x ( ln x ) 2 2 x ln x + 2 x + K {\displaystyle \int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x+K}
( ln x ) n d x = x k = 0 n ( 1 ) n k n ! k ! ( ln x ) k + K {\displaystyle \int (\ln x)^{n}\;dx=x\sum _{k=0}^{n}(-1)^{n-k}{\frac {n!}{k!}}(\ln x)^{k}+K}
d x ln x = ln | ln x | + ln x + k = 2 ( ln x ) k k k ! + K {\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}+K}
d x ( ln x ) n = x ( n 1 ) ( ln x ) n 1 + 1 n 1 d x ( ln x ) n 1 n 1 ) {\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
x m ln x d x = x m + 1 ( ln x m + 1 1 ( m + 1 ) 2 ) + K m 1 ) {\displaystyle \int x^{m}\ln x\;dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)+K\qquad {\mbox{( }}m\neq -1{\mbox{)}}}
x m ( ln x ) n d x = x m + 1 ( ln x ) n m + 1 n m + 1 x m ( ln x ) n 1 d x m 1 ) {\displaystyle \int x^{m}(\ln x)^{n}\;dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{( }}m\neq -1{\mbox{)}}}
( ln x ) n d x x = ( ln x ) n + 1 n + 1 + K n 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}+K\qquad {\mbox{( }}n\neq -1{\mbox{)}}}
ln x n d x x = ( ln x n ) 2 2 n + K n 0 ) {\displaystyle \int {\frac {\ln {x^{n}}\;dx}{x}}={\frac {(\ln {x^{n}})^{2}}{2n}}+K\qquad {\mbox{( }}n\neq 0{\mbox{)}}}
ln x d x x m = ln x ( m 1 ) x m 1 1 ( m 1 ) 2 x m 1 + K m 1 ) {\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}+K\qquad {\mbox{( }}m\neq 1{\mbox{)}}}
( ln x ) n d x x m = ( ln x ) n ( m 1 ) x m 1 + n m 1 ( ln x ) n 1 d x x m m 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{( }}m\neq 1{\mbox{)}}}
x m d x ( ln x ) n = x m + 1 ( n 1 ) ( ln x ) n 1 + m + 1 n 1 x m d x ( ln x ) n 1 n 1 ) {\displaystyle \int {\frac {x^{m}\;dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
d x x ln x = ln | ln x | + K {\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|+K}
d x x n ln x = ln | ln x | + k = 1 ( 1 ) k ( n 1 ) k ( ln x ) k k k ! + K {\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}+K}
d x x ( ln x ) n = 1 ( n 1 ) ( ln x ) n 1 + K n 1 ) {\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}+K\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
ln ( x 2 + a 2 ) d x = x ln ( x 2 + a 2 ) 2 x + 2 a tan 1 x a + K {\displaystyle \int \ln(x^{2}+a^{2})\;dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}+K}
x x 2 + a 2 ln ( x 2 + a 2 ) d x = 1 4 ln 2 ( x 2 + a 2 ) + K {\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\;dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})+K}
sin ( ln x ) d x = x 2 ( sin ( ln x ) cos ( ln x ) ) + K {\displaystyle \int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))+K}
cos ( ln x ) d x = x 2 ( sin ( ln x ) + cos ( ln x ) ) + K {\displaystyle \int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))+K}
e x ( x ln x x 1 x ) d x = e x ( x ln x x ln x ) + K {\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\;dx=e^{x}(x\ln x-x-\ln x)+K}
1 e x ( 1 x ln x ) d x = ln x e x + K {\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\;dx={\frac {\ln x}{e^{x}}}+K}
( ln x ) x d x = ( ln x ) x 1 + ( ln ( ln x ) ) ( ln x ) x + K {\displaystyle \int (\ln x)^{x}\;dx=(\ln x)^{x-1}+(\ln(\ln x))(\ln x)^{x}+K}
e x ( 1 ln x 1 x ln 2 x ) d x = e x ln x + K {\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x\ln ^{2}x}}\right)\;dx={\frac {e^{x}}{\ln x}}+K}


Bibliografia

  • Milton Abramowitz eta Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964. Liburu klasiko honetan integral batzuen zerrenda dago 69. or. .