Cálculo de Ricci

Em matemática, o cálculo de Ricci constitui as regras da notação de índice e manipulação de tensores e campos tensoriais.[1][2][3] Também é o nome moderno para o que costumava ser chamado de cálculo diferencial absoluto (a base do cálculo tensorial), desenvolvido por Gregorio Ricci-Curbastro em 1887-1896, e posteriormente popularizado em um artigo [4] escrito com seu pupilo Tullio Levi-Civita em 1900. Jan Arnoldus Schouten desenvolveu a notação moderna e o formalismo para esta estrutura matemática, e fez contribuições com a teoria, durante suas aplicações à relatividade geral e geometria diferencial no início do século XX.[5]

Partes simétricas e anti-simétricas

Parte simétrica do tensor

Parênteses, ( ), em torno de vários índices denota a parte simetrizada do tensor. Ao simetrizar índices p usando σ para variar sobre as permutações dos números 1 a p, obtém-se uma soma sobre as permutações desses índices ασ(i) por i = 1, 2, 3, …, p, e então divide pelo número de permutações:

A ( α 1 α 2 α p ) α p + 1 α q = 1 p ! σ A α σ ( 1 ) α σ ( p ) α p + 1 α q . {\displaystyle A_{(\alpha _{1}\alpha _{2}\cdots \alpha _{p})\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {1}{p!}}\sum _{\sigma }A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\,.}

Por exemplo, dois índices de simetrização significam que há dois índices para permutar e somar:

A ( α β ) γ = 1 2 ! ( A α β γ + A β α γ ) {\displaystyle A_{(\alpha \beta )\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }+A_{\beta \alpha \gamma \cdots }\right)}

enquanto para três índices de simetrização, existem três índices para somar e permutar:

A ( α β γ ) δ = 1 3 ! ( A α β γ δ + A γ α β δ + A β γ α δ + A α γ β δ + A γ β α δ + A β α γ δ ) {\displaystyle A_{(\alpha \beta \gamma )\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }+A_{\alpha \gamma \beta \delta \cdots }+A_{\gamma \beta \alpha \delta \cdots }+A_{\beta \alpha \gamma \delta \cdots }\right)}

A simetrização é distributiva em relação à adição;

A ( α ( B β ) γ + C β ) γ ) = A ( α B β ) γ + A ( α C β ) γ {\displaystyle A_{(\alpha }\left(B_{\beta )\gamma \cdots }+C_{\beta )\gamma \cdots }\right)=A_{(\alpha }B_{\beta )\gamma \cdots }+A_{(\alpha }C_{\beta )\gamma \cdots }}

Os índices não fazem parte da simetrização quando são:

  • não no mesmo nível, por exemplo;
    A ( α B β γ ) = 1 2 ! ( A α B β γ + A γ B β α ) {\displaystyle A_{(\alpha }B^{\beta }{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }+A_{\gamma }B^{\beta }{}_{\alpha }\right)}
  • entre parênteses e entre as barras verticais (ou seja, |⋅⋅⋅|), modificando o exemplo anterior;
    A ( α B | β | γ ) = 1 2 ! ( A α B β γ + A γ B β α ) {\displaystyle A_{(\alpha }B_{|\beta |}{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }+A_{\gamma }B_{\beta \alpha }\right)}

Aqui os índices α e γ são simetrizados, β não.

Parte anti-simétrica ou alternada do tensor

Colchetes, [ ], em torno de vários índices denota a parte anti-simetrizada do tensor. Para índices p anti-simetrizantes - a soma das permutações desses índices ασ(i) multiplicado pela assinatura da permutação sgn(σ) é tomado, então dividido pelo número de permutações:

A [ α 1 α p ] α p + 1 α q = 1 p ! σ sgn ( σ ) A α σ ( 1 ) α σ ( p ) α p + 1 α q = δ α 1 α p β 1 β p A β 1 β p α p + 1 α q {\displaystyle {\begin{aligned}&A_{[\alpha _{1}\cdots \alpha _{p}]\alpha _{p+1}\cdots \alpha _{q}}\\[3pt]={}&{\dfrac {1}{p!}}\sum _{\sigma }\operatorname {sgn}(\sigma )A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\\={}&\delta _{\alpha _{1}\cdots \alpha _{p}}^{\beta _{1}\dots \beta _{p}}A_{\beta _{1}\cdots \beta _{p}\alpha _{p+1}\cdots \alpha _{q}}\\\end{aligned}}}

onde δβ1⋅⋅⋅βp
α1⋅⋅⋅αp
é o delta de Kronecker generalizado de grau 2p, com escala conforme definido abaixo.

Por exemplo, dois índices anti-simetrizantes implicam:

A [ α β ] γ = 1 2 ! ( A α β γ A β α γ ) {\displaystyle A_{[\alpha \beta ]\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }-A_{\beta \alpha \gamma \cdots }\right)}

enquanto três índices anti-simetrizantes implicam:

A [ α β γ ] δ = 1 3 ! ( A α β γ δ + A γ α β δ + A β γ α δ A α γ β δ A γ β α δ A β α γ δ ) {\displaystyle A_{[\alpha \beta \gamma ]\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }-A_{\alpha \gamma \beta \delta \cdots }-A_{\gamma \beta \alpha \delta \cdots }-A_{\beta \alpha \gamma \delta \cdots }\right)}

como para um exemplo mais específico, se F representa o tensor eletromagnético, então a equação

0 = F [ α β , γ ] = 1 3 ! ( F α β , γ + F γ α , β + F β γ , α F β α , γ F α γ , β F γ β , α ) {\displaystyle 0=F_{[\alpha \beta ,\gamma ]}={\dfrac {1}{3!}}\left(F_{\alpha \beta ,\gamma }+F_{\gamma \alpha ,\beta }+F_{\beta \gamma ,\alpha }-F_{\beta \alpha ,\gamma }-F_{\alpha \gamma ,\beta }-F_{\gamma \beta ,\alpha }\right)\,}

representa a lei de Gauss para o magnetismo e a lei de indução de Faraday.

Como antes, a anti-simetrização é distributiva em relação à adição;

A [ α ( B β ] γ + C β ] γ ) = A [ α B β ] γ + A [ α C β ] γ {\displaystyle A_{[\alpha }\left(B_{\beta ]\gamma \cdots }+C_{\beta ]\gamma \cdots }\right)=A_{[\alpha }B_{\beta ]\gamma \cdots }+A_{[\alpha }C_{\beta ]\gamma \cdots }}

Tal como acontece com a simetrização, os índices não são anti-simetrizados quando são:

  • não no mesmo nível, por exemplo;
    A [ α B β γ ] = 1 2 ! ( A α B β γ A γ B β α ) {\displaystyle A_{[\alpha }B^{\beta }{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }-A_{\gamma }B^{\beta }{}_{\alpha }\right)}
  • dentro dos colchetes e entre as barras verticais (ou seja, |⋅⋅⋅|), modifica o exemplo anterior;
    A [ α B | β | γ ] = 1 2 ! ( A α B β γ A γ B β α ) {\displaystyle A_{[\alpha }B_{|\beta |}{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }-A_{\gamma }B_{\beta \alpha }\right)}
    Aqui os índices α e γ são anti-simetrizados, β não.

Soma das partes simétricas e antissimétricas

Qualquer tensor pode ser escrito como a soma de suas partes simétricas e antissimétricas em dois índices:

A α β γ = A ( α β ) γ + A [ α β ] γ {\displaystyle A_{\alpha \beta \gamma \cdots }=A_{(\alpha \beta )\gamma \cdots }+A_{[\alpha \beta ]\gamma \cdots }}

como pode ser visto adicionando as expressões acima para A(αβ)γ⋅⋅⋅ e A[αβ]γ⋅⋅⋅. Isso não se aplica a outros índices.

Referências

  1. Synge J.L., Schild A. (1949). Tensor Calculus. [S.l.]: first Dover Publications 1978 edition. pp. 6–108 
  2. J.A. Wheeler, C. Misner, K.S. Thorne (1973). Gravitation. [S.l.]: W.H. Freeman & Co. pp. 85–86, §3.5. ISBN 0-7167-0344-0  !CS1 manut: Nomes múltiplos: lista de autores (link)
  3. R. Penrose (2007). The Road to Reality. [S.l.]: Vintage books. ISBN 0-679-77631-1 
  4. Ricci, Gregorio; Levi-Civita, Tullio (março de 1900), «Méthodes de calcul différentiel absolu et leurs applications», Springer, Mathematische Annalen (em French), 54 (1–2): 125–201, doi:10.1007/BF01454201  !CS1 manut: Língua não reconhecida (link)
  5. Schouten, Jan A. (1924). R. Courant, ed. Der Ricci-Kalkül – Eine Einführung in die neueren Methoden und Probleme der mehrdimensionalen Differentialgeometrie (Ricci Calculus – An introduction in the latest methods and problems in multi-dimmensional differential geometry). Col: Grundlehren der mathematischen Wissenschaften (em german). 10. Berlin: Springer Verlag  !CS1 manut: Língua não reconhecida (link)