Triangular hebesphenorotunda

92nd Johnson solid (20 faces)
Triangular hebesphenorotunda
TypeJohnson
J91J92J1
Faces13 triangles
3 squares
3 pentagons
1 hexagon
Edges36
Vertices18
Vertex configuration3(33.5)
6(3.4.3.5)
3(3.5.3.5)
2.3(32.4.6)
Symmetry groupC3v
Dual polyhedron-
Propertiesconvex
Net
3D model of a triangular hebesphenorotunda

In geometry, the triangular hebesphenorotunda is a Johnson solid with 13 equilateral triangles, 3 squares, 3 regular pentagons, and 1 regular hexagon, making the total of its faces is 20.

Properties

The triangular hebesphenorotunda is named by Johnson (1966), with the prefix hebespheno- referring to a blunt wedge-like complex formed by three adjacent lunes—a figure where two equilateral triangles are attached at the opposite sides of a square. The suffix (triangular) -rotunda refers to the complex of three equilateral triangles and three regular pentagons surrounding another equilateral triangle, which bears a structural resemblance to the pentagonal rotunda.[1] Therefore, the triangular hebesphenorotunda has 20 faces: 13 equilateral triangles, 3 squares, 3 regular pentagons, and 1 regular hexagon.[2] The faces are all regular polygons, categorizing the triangular hebesphenorotunda as the Johnson solid, enumerated the last one J 92 {\displaystyle J_{92}} .[3] It is one of the elementary Johnson solids, which do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.[4]

The surface area of a triangular hebesphenorotunda of edge length a {\displaystyle a} as:[2]

A = ( 3 + 1 4 1308 + 90 5 + 114 75 + 30 5 ) a 2 16.389 a 2 , {\displaystyle A=\left(3+{\frac {1}{4}}{\sqrt {1308+90{\sqrt {5}}+114{\sqrt {75+30{\sqrt {5}}}}}}\right)a^{2}\approx 16.389a^{2},}
and its volume as:[2]
V = 1 6 ( 15 + 7 5 ) a 3 5.10875 a 3 . {\displaystyle V={\frac {1}{6}}\left(15+7{\sqrt {5}}\right)a^{3}\approx 5.10875a^{3}.}

Cartesian coordinates

The triangular hebesphenorotunda with edge length 5 1 {\displaystyle {\sqrt {5}}-1} can be constructed by the union of the orbits of the Cartesian coordinates:

( 0 , 2 τ 3 , 2 τ 3 ) , ( τ , 1 3 τ 2 , 2 3 ) ( τ , τ 3 , 2 3 τ ) , ( 2 τ , 0 , 0 ) , {\displaystyle {\begin{aligned}\left(0,-{\frac {2}{\tau {\sqrt {3}}}},{\frac {2\tau }{\sqrt {3}}}\right),\qquad &\left(\tau ,{\frac {1}{{\sqrt {3}}\tau ^{2}}},{\frac {2}{\sqrt {3}}}\right)\\\left(\tau ,-{\frac {\tau }{\sqrt {3}}},{\frac {2}{{\sqrt {3}}\tau }}\right),\qquad &\left({\frac {2}{\tau }},0,0\right),\end{aligned}}}
under the action of the group generated by rotation by 120° around the z-axis and the reflection about the yz-plane. Here, τ {\displaystyle \tau } is denoted as the golden ratio.[5]

References

  1. ^ Johnson, N. W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, S2CID 122006114, Zbl 0132.14603.
  2. ^ a b c Berman, M. (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR 0290245.
  3. ^ Francis, D. (August 2013), "Johnson solids & their acronyms", Word Ways, 46 (3): 177.
  4. ^ Cromwell, P. R. (1997), Polyhedra, Cambridge University Press, p. 87, ISBN 978-0-521-66405-9.
  5. ^ Timofeenko, A. V. (2009), "The non-Platonic and non-Archimedean noncomposite polyhedra", Journal of Mathematical Science, 162 (5): 717, doi:10.1007/s10958-009-9655-0, S2CID 120114341.

External links

  • v
  • t
  • e
Pyramids, cupolae and rotundaeModified pyramidsModified cupolae and rotundae
Augmented prismsModified Platonic solidsModified Archimedean solidsElementary solids
(See also List of Johnson solids, a sortable table)